
ISSN 0027-1322, Moscow University Mathematics Bulletin, 2018, Vol. 73, No. 4, pp. 131–136. c© Allerton Press, Inc., 2018.
Original Russian Text c© O.V. Gerasimova and Yu.P. Razmyslov, 2018, published in Vestnik Moskovskogo Universiteta,
Matematika. Mekhanika, 2018, Vol. 73, No. 4, pp. 3–9.

Frobenius Differential-Algebraic
Universums on Complex Algebraic Curves

O. V. Gerasimova a,∗ and Yu.P. Razmyslov a,∗

aMoscow State University, Faculty of Mechanics and Mathematics,

Leninskie Gory, Moscow, 119991 Russia, ∗e-mail: ynona_olga@rambler.ru

Received September 6, 2017

“Popular series is bound

to express popular views.”

Oscar Wilde

Abstract—In terms of differential generators and differential relations for a finitely generated commu-
tative-associative differential C-algebra A (with a unit element) we study and determine necessary

and sufficient conditions for the fact that under any Taylor homomorphism ψ̃M : A → C[[z]] the

transcendence degree of the image ψ̃M (A) over C does not exceed 1 (ψ̃M (a)
def
=

∞∑
m=0

ψM (a(m)) z
m

m!
,

where a ∈ A, M ∈ Spec
C
A is a maximal ideal in A, a(m) is the result of m-fold application of the

signature derivation of the element a, and ψM is the canonic epimorphism A→ A/M).

DOI: 10.3103/S0027132218040010
1. Introduction. These notes are not written for “proud scientists” (see [1, Introduction]), but for those

who following us will want to read them.

1.1. Differential C-algebras of Gerasimova. Let F2
def
= C[x(i), y(j)|i, j = 0, 1, 2, . . . ] be a free differential

C-algebra with two free generators x
def
= x(0), y

def
= y(0), and the signature differentiation in it maps x(i), y(j)

to x(i+1), y(j+1), respectively. Order all the monomials of degree ≤ m of x and y in the following way:
xm, xm−1y, xm−2y2, . . . , xym−1, ym; xm−1, xm−2y, . . . , xym−2, ym−1; . . . ; x2, xy, y2; x, y; 1.

Denote the Wronskian of these elements (this is a particular differential polynomial from F2) by Hm(x, y).
Specify the differential C-algebra Gm,n by the differential generators g1, . . . , gn and the differential

determining relations of two following types:
(a) Hm(gi, g

′
i) = 0 (i = 1, 2, . . . , n);

(b) Hm(gi, gj) = 0 (i ≥ j; i, j = 1, 2, . . . , n).
Proposition 1. For any maximal ideal M of the differential C-algebra Gm,n the image of this algebra

under the Tailor homomorphism ψ̃M : Gm,n → C[[z]] possesses the following properties:

(i) the transcendence degree of ψ̃M (Gm,n) does not exceed one;

(ii) the C-algebra ψ̃M (Gm,n) is finitely generated as a commutative-associative algebra;

(iii) all power series ḡ1(z)
def
= ψ̃M (g1), . . . , ḡn(z)

def
= ψ̃M (gn) converge in a certain neighborhood of zero

in the complex plane C1.

Proof. Since a Tailor homomorphism is a differential homomorphism, then ψ̃M (Gm,n) is a differential

C-subalgebra in C[[z]] relative to the differentiation
d_

dz
and ḡ1(z), . . . , ḡn(z) are differential generators of

ψ̃M (Gm,n). If all the power series ḡi(z) (i = 1, . . . , n) are constants, then the assertion of the proposition is
trivial.

Let ḡq(z) 6= const for some q ∈ {1, . . . , n}. It is known (see, e.g., [2]) that if the Wronskian |f1(t), . . . , fs(t)|
of the power series f1(t),. . . ,fs(t) ∈ k[[t]] equals zero, then these power series are linearly dependent

over k. Therefore, the definition of Hm(x, y) and the equalities Hm(gq, g
′
q) = 0, 0 = ψ̃M (Hm(gq, g

′
q)) =

Hm(ψ̃M (gq), ψ̃M (g′q)) = Hm(ḡq, ḡ
′
q) imply that the power series ḡq(z), ḡ

′
q(z) must be connected by a certain

nontrivial polynomial relation H(ḡq, ḡ
′
q) = 0, where H(u, v) ∈ C[u, v] and the degree of H does not exceed

m. Take the polynomial of the least degree from those polynomials. In this case we have
a) H(u, v) is an irreducible polynomial in C[u, v] (because C[[z]] does not contain divisors of zero);
b) ∂H

∂v
6= 0 (otherwise H(u, v) = H(u, 0) = α · u+ β · 1 and ḡq(z) = const);

c) ∂H
∂v

|u=ḡq ,v=ḡ′

q
6= 0 (since the degree of ∂H

∂v
is strictly less than the degree of H),

and we get the thoroughly studied situation (see [3]).
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132 GERASIMOVA, RAZMYSLOV

Theorem (O.V. Gerasimova). There exists a unique up to an isomorphism differential domain of integrity
WH generated by one differential generator w such that w 6= const and H(w,w′) = 0, where H(u, v) is an
irreducible polynomial in C[u, v]. Moreover, the transcendence degree of WH over C is equal to one and the
C-algebra WH is finitely generated as a commutatively associative algebra.

Therefore, the differential C-subalgebra Aq generated by ḡq(z) in C[[z]] and its field of quotients Q(Aq)
have the transcendence degree over C equal to one.

Similarly, using determining relation of type (b) of the algebra Gm,n and the Wronskian relations

Hm(ḡi, ḡj) = ψ̃M (Hm(gi, gj)) = ψ̃M (0) = 0, we conclude that the elements ḡj are algebraic over the field

Q(Aq), i.e., the field of quotients of the C-algebra ψ̃M (Gm,n) coincides with Q(Aq)[ḡ1, . . . , ḡn] and is a finite

extension of the field Q(Aq). Therefore, degC ψ̃M (Gm,n) = 1, which proves property (i) of the C-algebra

ψ̃M (Gm,n).

As was shown in [3] (see Theorem 1 and its corollary), properties (ii) and (iii) of the C-algebra ψ̃M (Gm,n)
follow from property (i). Proposition 1 is completely proved.

1.2. Notations and terminology. Below we use the following notations and definitions for any finitely
generated differential C-algebra B (with a unit):

degCB is the transcendence degree of B over C;
SpecCB is the set of all maximal ideals in B;

ψ̃M : B → C[[z]] is the Tailor homomorphism at the point M ∈ SpecCB;

RANGCB
def
= maxM∈SpecCB degC ψ̃M (B) is the rank of the differential C-algebra B;

ψ̃M0(B) is the germ of trajectory at the point M0 ∈ SpecCB;

{M ∈ SpecCB|M ⊇ Ker ψ̃M0} is the closure of the orbit passing through the point M0 ∈ SpecCB;

{M ∈ SpecCB| all the series from ψ̃M (B) converge in a certain neighborhood of zero} is the analytic

spectrum of the differential C-algebra B.
This terminology allows us to reformulate Proposition 1 and main results of the authors [3] (see Theorem 1

and its corollary) in the following way.
Proposition 2. If the rank of a finitely generated differential C-algebra B is equal to one, then its

spectrum is analytic and the closure of the orbit passing through an arbitrary point of the spectrum is an
irreducible affine algebraic curve (if not this point itself).

Obviously, the class of finitely generated differential C-algebras of rank ≤ 1 is closed relative to the
operation of determination of homomorphic images and localizations of such algebras with respect to a
non-nilpotent element. According to Proposition 1, it contains all algebras Gm,n. Are there any significantly
different objects in the selected class? The answer will be given below.

And now we offer the reader to answer two questions (as an exercise).
Question 1. What are countable differential C-algebras (with the unit and without nil-elements) having

zero rank?
Question 2. What is the rank of the free differential C-algebra F1

def
= C[x(0), x(1), x(2), . . . ] with one free

generator x
def
= x(0) ((x(i))′

def
= x(i+1))?

2. Affine differential C-algebras. Let X be an affine complex algebraic variety, C[X ] be its algebra
of regular functions (X = SpecC C[X ]).

Lemma 1. If the variety X is irreducible and is not a point, then it cannot be a union of a countable
number of its proper subvarieties.

Proof (E. B. Vinberg). Induction over the dimension of the variety X .
A differential C-algebra C[X ] relative to some fixed (nonzero) differentiation D is said to be an affine

differential C-algebra; we denote it by CD[X ]. (The differentiation D specifies a vector field on the variety
X and the notions defined above, namely, the germ of trajectory at a point M ∈ X , the closure of an orbit
passing through M , the Cauchy problem admit natural interpretation.)

The following proposition describes affine differential C-algebras of rank 1.
Proposition 3. If a1, . . . , aq are arbitrary differential generators of an affine differential algebra CD[X ]

of an irreducible variety X, then RANGC CD[X ] ≤ 1 if and only if CD[X ] is a (differential) homomorphic
image of the C-algebra Gm,q (g1 → a1, . . . , gq → aq) for some natural m, i.e., the following differential
relations hold in CD[X ]:

(a) Hm(ai, a
′
i) = 0 (i = 1, 2, . . . , q);

(b) Hm(ai, aj) = 0 (i ≥ j; i = 1, 2, . . . , q).
Proof. Let Im be a differential ideal in CD[X ] corresponding to differential relations (a), (b). This ideal

defines a certain affine subvariety Xm in X . If RANGCCD[X ] ≤ 1, then for an arbitrary maximal ideal
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FROBENIUS DIFFERENTIAL-ALGEBRAIC CURVES 133

M ∈ X in the image of ψ̃M (CD[X ]) the elements āi
def
= ψ̃M (ai), ā

′
i

def
= ψ̃M (D(ai)) (i = 1, . . . , q) must

be linked (pairwise) by some nontrivial polynomial relations. By n we denote the maximal degree of such

polynomials, but in this case all Wronskians Hn(āi, ā
′
i) = ψ̃M (Hn(ai, a

′
i)), Hn(āi, āj) = ψ̃M (Hn(ai, aj)) are

equal to zero in power series of C[[z]]. Therefore, M ∈ Xn and X =
∞⋃

n=0
Xn, i.e., the irreducible variety

X is a countable union of its subvarieties. Lemma 1 implies that X = Xm for some m, which proves the
proposition.

Corollary. In an arbitrary affine differential algebra CD[X ] of rank 1 (X is an irreducible variety) any
(differential) finitely generated C-subalgebra A relative to the differentiation D is a homomorphic image of
some C-algebra Gm,s, in particular, its rank does not exceed one.

Proof. Supplement the differential generators a1, . . . , as of the C-subalgebra A up to a finite system of
differential generators CD[X ]. According to the facts proved above, all relations (a), (b) from Proposition 3
must hold on this system of generators for some natural number m. But these relations also hold for the
subset of differential generators a1, . . . , as, i.e., A is a homomorphic image of Gm,s (gi → ai). The corollary
is completely proved.

It seems to us that here we could make a small respite in our presentation.
3. Coulomb field and its rank. Define a commutatively associative differential C-algebra R (with the

unit) by the differential generators x, y, r, r−1 and the differential determining relations

x′′ = −
4π2k

r3
· x, y′′ = −

4π2k

r3
· y, r2 = x2 + y2, r · r−1 = 1,

where 0 6= k ∈ C. By Rσ0,1 we denote the localization of the algebra R with respect to the element

σ0,1
def
= x · y′−x′ · y. As was shown in [3–5], for an arbitrary maximal ideal M ∈ SpecCRσ0,1 the power series

x̄(z)
def
= ψ̃M (x), ȳ(z)

def
= ψ̃M (y) are related as

H(x̄, ȳ) = 0, 0 6= x̄ · ȳ′ − x̄′ · ȳ = σ = x̄(0) · ȳ′(0)− x̄′(0) · ȳ(0) ∈ C,

where H(u, v) is an irreducible quadratic polynomial. These relations (due to the absence of singular points
on the curve H(u, v) = 0) successively imply the following properties:

(i) L(x̄, ȳ) · (x̄(z), ȳ(z))′ = σ · (−∂H
∂v
, ∂H
∂u

)|u=x̄,v=ȳ, where L(u, v)
def
= ∂H

∂u
· u+ ∂H

∂v
· v;

(ii) L(x̄, ȳ) is an invertible element in ψ̃M (Rσ0,1 ), which coincides with r̄(z)
def
= ψ̃M (r) up to a numeric

multiplier (see formulas of Nikchemny in [4]);

(iii) the C-algebra ψ̃M (Rσ0,1 ) is generated by the three elements x̄, ȳ, (L(x̄, ȳ))−1 as a commutatively
associative algebra.

Therefore, the field of quotients of the C-algebra ψ̃M (Rσ0,1 ) coincides with the field of rational functions
C(XH) of the quadratic curve XH (given by the equation H(u, v) = 0) which (see [6]) in its turn is a field

of complex rational functions of one variable. Therefore, the degree of transcendence of ψ̃M (Rσ0,1) is equal
to 1 for any M ∈ SpecCRσ0,1 and RANGCRσ0,1 = 1 in the problem of two bodies1.

Since Rσ0,1 is an affine differential C-algebra and the domain of integrity, the corollary from Proposition 3
implies that any one-generated differential C-subalgebra in Rσ0,1 has rank ≤ 1 and its differential generator
has to satisfy one of the characteristic relations Hm(w,w′) = 0 in it. What is the dependence of the number
m on the choice of w ∈ Rσ0,1?

If w = r, then the answer immediately follows from the “fundamental” equality

1

2
· ((r̄′(z))2 +

σ2

r̄2(z)
)−

4 · π2 · k

r̄(z)
= E/me(E, σ ∈ C)

stating that the differential monomials r2 · (r′)2, r2, r, 1 become linearly dependent after application of any
Tailor homomorphism to them. Therefore, m = 4. Clearly, the relation H4(r, r

′) = 0 very roughly reflects
the specific situation w = r because we can replace H4(r, r

′) by the Wronskian |r2 · (r′)2, r2, r, 1| in it.
Question. Why since the time of Robert Hooke’s predecessors there is nothing like this for w = α·x+β ·y

(α, β ∈ C) in tutorials?2

1We have no doubt that the reader who reached this point have already rolled up his sleeves and independently tries to find
out what is the rank of Gerasimova in the problem of three bodies.

2Answer: because it is not necessary . . . .
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134 GERASIMOVA, RAZMYSLOV

4. The basics of the algebraic theory of Brahe–Descartes–Wotton.3 Everywhere in this subsec-
tion the C-algebra A is a (differentially) finitely generated domain of integrity. First we show that the results
of Section 2 are valid for arbitrary such C-algebras of rank 1.

4.1. Preliminary information.
Lemma 2. If A has no free differential C-subalgebras, then A has an element a such that the localization

Aa with respect to it is finitely generated as a commutatively associative C-algebra, i.e., Aa is an affine
differential C-algebra and RANGCA ≤ degCA = degCAa 6= ∞.

Proof. Let a1, . . . , an be differential generators of A. Consider the chain of elements ai, a
′
i, . . . , a

(q)
i ,

. . . . The hypothesis of the lemma implies that algebraically dependent elements must be among them. Let

Pi(x0, x1, . . . , xmi
) be a nonzero polynomial of the least degree satisfying the equality Pi(ai, a

′
i, . . . , a

(mi)
i ) =

0. Differentiating this equality, we get the relation

0 =

(
∂Pi

∂xmi

· a
(mi+1)
i +

mi−1∑

j=0

∂Pi

∂xj
· a

(j+1)
i

)∣∣∣∣
x0=ai,x1=a′

i
,...,xmi

=a
(mi)

i

.

But in this case all a
(mi+j)
i (j = 1, 2, . . . ) lie in the localization Aei of the algebra A with respect to the

element

ei
def
=

∂Pi

∂xmi

|
xj=a

(j)
i

(j=0,1,...,mi)
.

Assume a
def
= e1 · e2 · . . . · en. In this case the localization Aa

def
= A[a−1] is a differential C-algebra generated

by the elements a−1, a
(j)
i , where i = 1, . . . , n, j = 1, . . . ,mi, as a commutatively associative C-algebra. This

proves that Aa is an affine differential C-algebra. Other assertions of the lemma are evident now.
Corollary. If A has no free differential C-subalgebras, then its analytic spectrum contains the main open

set {M ∈ SpecCA|a(M) 6= 0}.
Lemma 3. If A contains a free differential C-subalgebra, then RANGCA = ∞.

The proof immediately follows from the following fundamental assertion: if A contains some free dif-

ferential C-algebra, then A also contains a free differential C-subalgebra F1 with one free generator x
such that any maximal ideal in F1 can be raised up to the maximal ideal in A (see [7]). Therefore,
RANGCA ≥ RANGCF1 = ∞. (In fact, consider the differential C-homomorphism ϕm : F1 → C[[z]]

such that ϕm(x)
def
= eλ1·z + . . . + eλm·z, where λ1, . . . , λm ∈ C are linearly independent over the subfield of

rational numbers Q. In this case the differential C-subalgebra ϕm(F1) in C[[z]] relative to the differentiation
d
dz

contains all the exponentials eλ1·z, . . . , eλm·z algebraically independent over C. Since any homomorphism
ϕ : F1 → C[[z]] is a Tailor homomorphism, then maxϕdegϕ(F1) > 1, 2, . . . ,m, . . . , i.e., RANGCF1 = ∞.)
Lemma 3 is completely proved.

Theorem 1. Any n-generated differential C-algebra B of rank 1 not containing nil-elements is a home-
omorphic image of Gerasimova’s differential C-algebra Gm,n for sufficiently large natural number m. More-
over, all differential C-subalgebras in B have rank ≤ 1.

Proof. According to the Ritt–Raudenbush theorem (see [8]), the C-algebra B is a finite subcartesian
product of differential domains of integrity. More precisely, there exist differential ideals I1, . . . , Is in B such

that a) I1 ∩ I2 ∩ . . . ∩ Is = 0, b) Ai
def
= B/Ii (i = 1, . . . , s) are domains of integrity. By b1, . . . , bn we denote

the differential generators of B. Let ϕi : B → Ai be canonical (differential) epimorphisms. Since the rank
of ϕi(B) equals 1, then by Lemma 3 the algebra Ai cannot contain free differential C-subalgebras, and by
Lemma 2 Ai is a differential C-subalgebra of some affine differential C-algebra and ϕi(b1), . . . , ϕi(bn) are its
differential generators. Therefore, the corollary from Proposition 3 implies that Ai is a homomorphic image
of the C-algebra Gmi,n (gj → ϕi(bj), j = 1, . . . , n) and the following relations must hold on the generators
{ϕi(bj)|j = 1, . . . , n}:

a) Hmi
(ϕi(bj), ϕi(b

′
j)) = 0 (j = 1, 2, . . . , n);

b) Hmi
(ϕi(bj), ϕi(bt)) = 0 (j > t; j, t = 1, 2, . . . , n).

Assuming m
def
= maxmi, from the latter we conclude (because of I1 ∩ I2 ∩ . . . ∩ Is = 0) that the following

relations hold for b1, . . . , bn:
a) Hm(bj , b

′
j) = 0 (j = 1, 2, . . . , n);

b) Hm(bj , bt) = 0 (j > t; j, t = 1, 2, . . . , n),

3See also the same heading in [4].
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and these relations imply that B is a homeomorphic image of the C-algebra Gm,n (gj → bj, j = 1, . . . , n).
This proves the first assertion of the theorem.

Repeating word for word the reasoning in the proof of the corollary of Proposition 3, we obtain that
any (differential) finitely generated C-subalgebra in B has rank ≤ 1. But in this case for each differential

C-subalgebra E in B and under the Tailor homomorphism ψ̃M : E → C[[z]] (M runs over SpecCE) any

power series ψ̃M (e1), ψ̃M (e2) (e1, e2 run over the whole E) must be connected by a nontrivial polynomial

relation. Therefore, degC ψ̃M (E) ≤ 1, and this means that RANGCE ≤ 1. The assertion of the theorem is
completely proved.

Corollary. A differential C-algebra B with differential generators b1, . . . , bq has rank ≤ 1 if and only if
there exist natural numbers m, n such that

a) (Hm(bj , b
′
j))

n = 0 (j = 1, 2, . . . , q);

b) (Hm(bi, bj))
n = 0 (i > j; i, j = 1, 2, . . . , q).

Proof. By Rad B we denote the set of all nil-elements in B. Since the algebra of power series C[[z]] has

no divisors of zero, then ψ̃M (Rad B) = 0 for any M ∈ SpecCB, and this means that Rad B is a differential
ideal in B and the ranks of the differential C-algebras B and B/Rad B coincide. Denote the canonical
epimorphism B → B/Rad B by ϕ.

If the rank of B equals one, then by Theorem 1 the factor algebra B/Rad B is a homomorphic image of

some algebra Gm,q (gi → b̄i (i = 1, . . . q)) and the following relations must hold on its generators b̄1
def
= ϕ(b1),

. . . , b̄q
def
= ϕ(bq):

a) Hm(b̄j , b̄
′
j) = 0 (j = 1, 2, . . . , q);

b) Hm(b̄i, b̄j) = 0 (i > j; i, j = 1, 2, . . . , q).
Therefore, all Hm(bj , b

′
j), Hm(bi, bj) belong to Rad B, i.e., they are nil-elements. Taking n sufficiently large,

we obtain the proof of the corollary in one direction.
If the differential generators b1, . . . , bq in the C-algebraB satisfy the relations indicated in the formulation

of the corollary, then the generators b̄1, . . . , b̄q satisfy in B/Rad B the relations
a) Hm(b̄j , b̄

′
j) = 0 (j = 1, 2, . . . , q);

b) Hm(b̄i, b̄j) = 0 (i > j; i, j = 1, 2, . . . , q),
i.e., B/Rad B is a homomorphic image of the differential C-algebra Gm,q and

1 ≥ RANGC(B/Rad B) = RANGC(B),

which finishes the proof of the corollary.
4.2. Differential C-algebras of rank 1. By Γ1 we denote the class of differential (countable-dimensional)

C-algebras B such that all their (differentially) finitely generated C-subalgebras have rank ≤ 1. Obviously,
this class is closed relative to the operations of determination of differential C-subalgebras and homomorphic
images. A keen reader can easily notice that the differential C-algebras and C-subalgebras appearing in
formulations of assertions belong to Γ1. Recent results of Pogudin allow us to weaken the conditions posed
on C-subalgebras of this class.

Theorem 2. The class Γ1 consists of differential C-algebras B such that any element w from B satisfies
the equality (Hm(w,w′))n = 0 (m = m(w), n = n(w)).

The definition of the class Γ1 and the corollary of Theorem 1 imply that the proof of Theorem 2 is reduced
to justification of the following assertion.

Proposition 4. A finitely generated differential C-algebra B has rank ≤ 1 if the rank of any its one-
generated differential C-subalgebra does not exceed one.

Prove this fact in three stages.
1. The C-algebra B does not contain divisors of zero. In this case the assertion of the proposition im-

mediately follows from the fundamental result of Pogudin [9]: if B has no free differential C-subalgebras,

then the field of quotients of B coincides with the field of quotients Q(A) of some differentially-one-generated

in B C-subalgebra A. (In fact, according to Lemma 3, the algebra B cannot contain one-generated free
subalgebras isomorphic to F1. Therefore, the differential generators b1, . . . , bq of the C-algebra B lie in Q(A)
and by Lemma 2 there exists an element a in A such that a) b1, . . . , bq ∈ Aa; b) Aa is an affine differential
C-algebra of rank ≤ 1, i.e., B is a (differentially) finitely generated C-subalgebra in Aa. Due to the corollary
from Proposition 3, we get RANGCB ≤ 1.)

2. The C-algebra B does not contain nil-elements. In this case, as was indicated in the proof of Theorem 1,

there exist differential ideals I1, . . . , Is in B such that a) I1 ∩ I2 ∩ . . . ∩ Is = 0, b) Ai
def
= B/Ii (i = 1, . . . , s)
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136 GERASIMOVA, RAZMYSLOV

are domains of integrity for which we have already proved the inequality RANGCAi ≤ 1 on the first stage.
Therefore, Ai are homeomorphic images of some C-algebras Gmi,q of Gerasimova. In this case, taking m =
max{m1, . . . ,ms}, we conclude (due to I1 ∩ I2 ∩ . . . ∩ Is = 0) that B is a homeomorphic image of Gm,q and
RANGCB ≤ 1.

3. The general case Rad B 6= 0. As we have seen above, RANGCB = RANGC(B/Rad B). The factor-
algebra B/Rad B has no nilpotent elements, therefore (as was proved on the second stage), its rank does
not exceed one. Therefore, the rank of B does not exceed one too.

It was said (see [10]) about Tycho Brahe: ". . . Skill not pass. A man leaves, and it goes with him. Students,
followers, and craft remain." So it goes, so to speak. The everlasting Cartesian question: "Should we take
everything with us?"
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