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Abstract. The text is both an algebraic lesson and a Cartesian master class (a gift of Gods, one should say) for
metaphysicians, metaphysicists and their followers. | [ —
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“We cateh in flight all dreams of realists,
In diff-equations we are the best.

We are simple algebraists, not physicists,
Light good old Mind is our quest!”
From the L.V.M. manifest.

We start with one intuitionistic, purely algebraic trick, which enables us to resolve several kinds
of differential equations with respect to the highest order derivative.

Lemma on affinity of intermediate subalgebra. Assume that a finitely generated commutative
associative integral domain A is an algebra with the identity element over an algebraically closed field
k (chark =0,2,3,5,7,11,13,17,19,23,29,31,37,... ), and its quotient field Q(A) is of transcendency
degree 1 over k. Further, if algebras A and B in a sequence of k-subalgebras A C C' C B C Q(A) are
finitely generated, than the same is true of the subalgebra C.

Proof. As soon as B is finitely generated, C' is a countably dimensional k-algebra. We choose

elements {ei|i = AR } in C as to complement the basis of the k-algebra A to a basis of C.

Assign Cg A G‘.'.—}—I = C[e,H] Cas 4f B and denote by Co,C1,...,Ci,...,Co the integral

closures (“normalizations”) of these finitely generated subalgebras in Q( A). It is well known that
each k-subalgebra of that type is finitely generated. Moreover, in the course of the proof (see [1]) it
is established that C; is finitely generated as a module over Cj, and consequently Noetherian. Let us
show that the ascending chains of k-subalgebras {C;}, {C;} (: =1,2,3,...) eventually stabilize.

Proposition 1. If in a chain of integral domains F C G C Q(F') the k-subalgebras F' and G are
finitely generated, F' = F (i.e. F is integrally closed), and deg,Q(F) = 1, then the natural mapping
v : Spec, G — Spec, F satisfies the following conditions:

(a) v is injective,

(b) if v is surjective, then G coincides with F,

(c) (Spec, F) \ v(Spec,G) is a finite set.

That is an exact translation of the statement of Corollary 2 of Theorem 2 in section 2 of part 2
(see the monograph [1]).

From the property (b) we conclude that if C; # C;;1, then there exists a maximal ideal M €
SpeckO that cannot be raised to an ideal in Spec,Cis1, thus it follows from the property (a) that
M N Cy € Spec,Cy cannot be raised to an ideal in Spec,Coo. But by virtue of the property (c) there
are finite many maximal ideals in Cp that cannot be raised to ideals in Spec; Coo. Consequetly, there
are finitely many places where the inclusions are strict in the ascending chain of “normalizations”

CoCC C...Cp C...,ie. Cn = Cnyi for a sufficiently large number N € N (i = 1,2,. i)
and Cy C C' = | JCm € Cx. But as noted above Cy is Noetherian as a module over Cy. Thus its
m
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Cy-submodule C is finitely generated and has to coincide with C 4 for a particular ¢ € N, which
proves the proposition.

The following statements are easily deduced from the proposition above.

Theorem 1. Any finitely generated differential k-algebra without zero divisors and of
transcendence degree 1 is finitely generated as a commutative associative algebra, in particular this
differential k-algebra is finitely presented.

Corollary. The spectrum of all the maximal ideals SpecgA of an arbitrary finitely generated
differential commutative associative C-algebra A without zero divisors and of transcendence degree 1
is analytic, i.e. for any C—homomorphism ll)M A— 6‘ (M € SpecgA) under the Taylor homomorphism

U + A = C[[z]] all the series 11)M E Par(a mi converge in some neighborhood of zero.

Theorem 2. Let X be an affine 1rred11(:1ble algebraic curve over an algebraically closed field k and
k[X] be its algebra of regular functions. Then any k-subalgebra in k[X] is generated by a finite subset
of its elements.

Corollary. Let K be a field of transcendence degree 1 over its algebraically closed subfield £,
Der, K an algebra Lie of all k-derevations of the K. Then for any ay, ..., ay, € K, Dy, ..., Dy € DergK
the least commutative assotiative k-subalgebra A in K containing a1, ..., am, for which D;(A) C A
(1=1,2,...,n), is finitely generated.

We should like to illustrate these results and their proofs by particular examples.

1. Differential Picard algebras (see [2]). 2 Let P be a differential C-algebra determined by
generators i,...,Tn and n defining relations: z{ = fi(z1,...,z5) (I = 1,2,...,n), where f; are
elements of the polinomial algebra €|[z1,...,z,]. It is evident tha,t the algebra P arbitrary chosen

contains no zero divisors and can be realised by the derivation D & E fi 55, On Clz1,...,Zn)

The spectrum of this differential algebra coincides with the afﬁne space €™. The estimate

s =]
(D™ X f)|z=p)/m!| < n™a™*! holds for all coefficients of the Taylor series Dum(f) def Y. [P

m=0

} | P ———— (f € Clz1,...,2n), M & (a1,...,an)), where a is the largest absolute value
of the functions f f], ., fn and all their partial derivatives at the point M. Consequently, all the
power series d)M(rl} d)M(,cn) converge in some neighborhood of zero. The equality ¥ (f) =
f(ng(ml),...,@M(xn)) shows us that for any f € C[zy,...,z,] the series w(f) converges at the
same neighborhood. Since any finitely generated commutative associative C-algebra A with a fixed
derivation D € DergA is a homomorphic image of the Picard algebra P for a suitable choice of n
and fi,..., fa, the spectrum Specg A is also analitic for any D € Derg A. That proves the corollary of
Theorem 1.

2. “Rational” differential-algebraic parametrisations of flat affine irreducible algebraic
curves. Denote by Xp a flat affine irreducible algebraic curve given by an equation H(z,y) = 0
(H(z,y) € k[z,y]). Let k[Xy] be k-algebra of regular functions of Xp over algebraically closed
field k (char k& = 0,1,2,.... In sections 2.1-3, 3 we suppose that all differential k-algebras
(“parametresations”) defined by differential algebraic relations are in a natural way to contain k[X y]
as a k-subalgebra. Of coure, it implies that the irreducible polynomial H(z,y) does have additional
properties. For once we point out the following exact and evident conditions

a) 3 aH ;é{] in the sections 2.1, 2.3,
6)3: 3x +y- 3y ¢ k- H(z,y) in section 2.2,

B) (%?)2 + (82 ) # 0 in section 3,
which are 11ecessa.ry and sufficient for embedding k[X ] in corresponding k-algebras given below.
2.1. Singly generated differential-algebraic curves (proof of Theorem 2). We determine a
differential k- (ngobra. with the identity element Wy by two generators w, wi and two defining relations
H(w,w;) = 0, w' = wy, where H(w,w;) is an irreducible polynomial in kfw,w;], for which 8” = #0.
Unfortunately, it is currently unknown whether this commutative associative algebra contd,ms Zero

?Proof of the corollary of Theorem 1.



divisors. To get rid of such kind of virtual elements (when Lg;% # 0) we consider in Wy the differential
- T ae:

ideal I'yy gt {a € Wy (EL%) -a = 0,m = m(a)} and localize Wy by the element d e gu*:': € Wy. Then
the kernel of the canonical homomorphism of differential algebras v : Wy — (Wh)a o {(—E‘J;“J € Wu}
coincides with the ideal Iy. Let Wg e v(Wpg), @ %u(w), Fe v(d), @ get v(wy), k[ X | = klw,@].
Now from the equality @ = @; we conclude that Wy is differentially generated by one element w,
and the equality 0 = H' = %gw' - %‘:—w” leads to the fact that under v : Wy — (Wg)q all elements
of v(Wg) = Wy lie in the commutative associative subalgebra generated by three elements w, wy,
d' = (wi - &)~

Now we are in a position to realize W g as a differential k-subalgebra in the field k(X ) with respect

to the derivation D % wi (2 — (42 g%)aim), where Xy is the flat irreducible affine algebraic curve
given by equation H(w,w;) = 0, Consequently, we get a chain of k-algebras k[Xyg)CWr C (Wh)g C
k(X ), which satisfies all the conditions of the lemma on affinity of intermediate subalgebra. It is
evident that any one generated differential subalgebra of an arbitrary integral domain (of transcendence
degree 1) is a homomorphic image of W g for an appropriate choice of H{w,w1) (g;ﬂ-’r; # (). That proves
Theorem 1 on affinity of differential-algebraic curves.

(Especially note that the above reasoning is true for all algebraically closed fields of positive
characteristic p, because the equalities %{; =0, % = 0 imply another relation H (w,w;) = (F(w,w1))?,
which contradicts the irreducibility of H.)

We conclude the section by one not complicated (maybe whatnot, but memorable) version of
Theorem 1.

Proposition 2. If in a differential domain of integrity F* over an algebraically closed field k
elements f and f' satisfy to a nonzero polynomial relation H(f, f') =0 (H(z,y) € k[z,y], H # 0), then
there exists a natural number N, for which N = G({, f’,f”,...,f(N_l)), where G(z1,Z2,...,ZN)
€ k[$1,$2,... ,:ITN].

Corollary. If in a real interval (a,b) an infinitely differentiable complex valued function f(t)
is a solution of a differential equation H(f,f') = 0, where H(z,y) € Clz,y], is a nonzero
irreducible polynomial, then f(N)(t) = G(f(t), f'(t), f"(t),...  fV-1)(t)), where G(z1,Z2,...,ZN)
€ Clzy,2,...,zn], for a sufficiently large natural number N.

2.2. Kepler parametrizations of flat curves. A differential k-algebra with the identity element
Gy is given by generators z, y and two differential defining relations H (z,y) =0, zy' —z'y = o, where
H is an irreducible polynomial in k[z,y], for which z - % +y- %g— ¢k-H(z,y) 3, and 0 # 0 € k
(for example, o = h/me). Solving the system of equations 0 = H'= %—‘;{ -z’ + % -~y +xy =0

!
with respect to z',y', we get L(z,y) - ( :;, ) =0 ( :’)‘(?Figiy ), where £ % oM.z + %% - y. If the
irreducible affine curve X (given by the equation H(z,y) = 0) is smooth, the ideal generated by %i},
% in k[X ] has to coincide with the algebra Gg. Thus a%—f + b%‘g = 1 for appropriate a, b from
k[X ). Consequently, £-(—az'+by') = 0, i.e. the element L is invertible in G p. It follows immediately
that Gy (as a commutative associative k-algebra)

(a) is generated by its three elements: z, y, £t

(b) can be included into the field k(X ) and contains no zero divisors;

(c) is realized as a differential subalgebra in k(Xp) with respect to the derivation Dpy B g
ﬁ—l[_@.ﬁ. + ﬂﬁ_)

dy oz oz dy ; 5T
In general it is possible that there exist zero divisors in G . Let I be an arbitrary differential ideal

in G g, for which G /T contains no zero divisors. If we assume that I intersects by more than just the
sero element with the subalgebra k[Xj7] generated by z, y in G g, then the algebra k[ Xg)/(INk[XH])

SIfFH = Ho+ Hi + -+ + Him, where Ho, Hy, ..., Hm, are homogeneous components of the polynomial H(z,y) then
T %-{—y-% = 0-Ho+1-Hy4+-+m-Hpy and in the case, when char k = 0, the inclusion m-%—i—y‘%% € k-H(x,y) is true
for homogeneous H(z,y) only. But an arbirary irreducible homogeneous polynomial has degree 1. Hence, H(z,y) = Hi

and the equation H(z,y) = 0 defines a strait line, which contains the origin.



be zero-dimensional, and the integral domain G /I should coincide with k - 1, but it contradicts the
statement zy’ — z'y = o # 0. If I N k[Xg] = 0, then the element £ € k[Xy] is not equal to zero in
the integrity domain Gy /I and after localization by £ we get (Gg/I)z = (Gg)c/Ic. Consequently,

the ideal I has to coincide with the ideal I(H) o {a € Gu|L™-a =0 in Gyg,m = m(a)}. It proves
that there exists the only integral domain Gy, given by generators z, y and two differential defining
relations H(z,y) =0, zy' — 2'y = 0 (0 € k,0 # 0), for which the following statements are true:

(a) G is imbeded into k(Xp) with respect to the derivation Dy ©f et o(— %{j 3'1 #+ '?91; ;y)

(b) under this embedding k[Xy] C Gy C (Gp)c C k(Xy) and as a commutative associative
k-algebra the localization (G'H)g is generated by three elements z,y, £71;

(¢) Gy is a simple differential k-algebra and the signature derivation does not vanish at any point
of the spectrum Spec, G y.
Hereby (look also at Lemma on affinity of intermediate subalgebra), Xa, = = Spec, Gy is a smooth
affine irreducible algebraic curve and Gy contains k[X%], where X% 7y 1s a normalization of the curve
X 1. So we see that the Kepler observer G g excludes from his consideration all the non-linear branches
of X%, and slightly moving off the origin, can notice all the linear ones.

This observer surveying the curve Xy can try to act more radically: run up along the line z = 0
from the origin to the gallery.

2.3 Puiseux parametrizations. Let us consider a differential k-algebra with the identity element
Py, given by generators z, y and two defining relations H(z,y) = 0, 2’ = ¢ (¢ € k, ¢ # 0), where H(z, )
is an irreducible polynomial, for which % # 0. The arguments presented in the previous two examples

m
ensure that there exits a unique (possibly zero) differential ideal (equal to I qef {a € Py]| (%") ca=

0, m = m(a)}) such as the quotient algebra with respect to tha,t ideal contains no zero divisors. Denote

this quotient algebra throw Py. The equality 0 = H' = 25¢ + 28/ shows us that the localization
& A4 6;c By Y

t(?H

Py with respect to the elemen By 1s generated as a commutative associative k-algebra by its three

— .
elements z, y, (%%) , and Pp is realized as a differential subalgebra in the field k(X ) with respect
to the derivation D = D(H) = c( ( /2 ) ) Then K[Xp] C Py C (Pr)gz C K(Xa), and

in the view of uniqueness of the ideal I the differential k-algebra PH does not vamsh at any point

of Spec, Py and in the same way as in the previous example X_pH = SpeckPH is a smooth affine
irreducible algebraic curve, for which k[Xp, | = Py contains k[XY%], where XY, - is a normalization of
the flat curve X}. Wherein Py excludes from its consideration those branches of the curve X}, for
which their projections of the tangents on the plane Ozy are parallel to the line z = 0. (Non-linear
branches are excluded, to0o).

2.4. Common case: (D = g (%@Q% - %5‘%)) :k(Xg) = k(Xp) is treated similarly 2.1 - 2.3.

3. Fermat parametrizations (natural parameter). Let us consider a differential k-algebra
with the identity element Fy determined by generators z, ¥ and two defining relations H(z,y) = 0,
()2 + (¥')? = c? (chark # 2, 0 # ¢ € k), where H(z,y) is an irreducible polynomial in klz,y], for

which A (82 ) + (%—‘;{)2 # 0. 1 It is obvious that signature derivation does not vanish at any point
of the spectrum Spec, Fr of the k-algebra Fpr, thus if we show that any homomorphic image Fy of
the algebra Fy without zero divisors is of transcendence degree 1 over k, then Fy will turn up to

be a simple finitely generated differential k-algebra with an analytic spectrum. Let ¢ : Fy — Fgy

be the corresponding epimorphism, Z o d(z),y et @(y), k[Xp] the algebra of regular functions of
the flat affine curve Xp given by the equation H(z,y) = 0. It is clear  that k[Xp] is isomorphic to

UfA=0,then 0= (L +(-)V2-8H). (BE — (-1)/* - GH) = S . 81 where t ¥ (1/2) @+ ()2 )
t, (1/2) - (x — (=1)/2 . y). But then, if char k = 0, (due to zrmduubmty H{x,y) over an algebraically closed ﬁeld)
either H =a -1+ 3, or H = - t2 4+ 3. In that case the condition (6”) + ‘“") £ 0 excludes from our consideration

two bundles of parallel direct lines given by the following equations x +y - (— 1)1/2 =68, x—y-(=1)"? =6, for which
P2 +y;2 i (m: +yr . (__1)1./2) ) (II.'! " y; . (_1}1/2) = 0.
5 The equality H(x,y) = 0 implies the relation 0 = H = x

’.‘3*’I+1’,E_’£

: - 2 i 2 4 2
e 5y » in particular, ' (‘;’:) =y () and



the k-subalgebra, generated by z, y in Fi and k[Xp] N Kerg = 0 (otherwise the zero-dimensional
subalgebra ¢(k[Xg]) would generate Fr and #', 7 should be equal to zero, but this contradicts with
the equality (z')? + (y)2 = ¢ # 0). Equalities %’% =0, %—g = 0 are possible if chark = p > 0, but due
to the fact that H(z,y) is irreducible, either % # 0, or L £0.

; def AN : :
We consider the case when %—% # 0. Then d = ¢ (%ﬁ-f-) is a nonzero element in the integral

r

g = -(qb(%—g)/d)i:’, (z')2(1 + (qﬁ(%—';‘r)/d)z) — ¢2 in the quotient field Q(Fy) of the algebra Fy. The
last relation implies that

(a) the k-subalgebra E generated by Z, 7, #', ' is contained in the “quadratic extension” of the
field ¢(k(Xw));

(b) 20,50 € Q(E)(i =2,3,...).

These properties prove that the integral domain Fy is contained in Q(E) and deg, Fy =
deg,Q(E) = 1. By Theorem 1, the commutative associative k-algebra Fy is finitely generated and
finitely presented as a differential k-algebra. As the signature derivation ' does not vanish at any point

domain Fy and from the equalities 0 = ¢(H') = qﬁ(%li);?;’ + 45(%%)37', ()2 + (7')? = ¢* we get that

of Xp, 9 Spec, Fy, Fpy is an integrally closed k-algebra and Fy contains k[X%], where X7, is the
normalization of the curve Xpg.

4. Nonaffine differential-algebraic surfaces exist. Let a differential C-algebra E (with the
identity element) be given by generators z, y and two defining relations z’ = 1, 2?2y +y—z=0.
Assume that Z(2) def z, §(2) def }% (=1)™m! - 2(m+1) and generate a differential C-subalgebra E by

m=0
%, § in power series C[[z]] with respect to the derivation 4 Direct verification shows that & =1,
72% + 5 — 7 =0 in C[[z]]. Thus, the integral domain E is a homomorphic image of E at ¢ : E — E
(¢(z) = 7, ¢(y) = §) and we consistently get

(a) Kerg = {a € E|z®™ -a =0 (m =m(a))},

(b) for the maximal ideal M € Spec@E, which is the intersection of E}: with the unique maximal
ideal of €[[z]], under the Taylor homomorphism ¥y : E — C[[z]) we get ¥m(Z) =T, vm(y) = 7, i.e.
Specg E is not analytic at the point M;

(c) &, § are algebraically independent over C (otherwise E would coincide with some Puiseux
parametrization Py (H(z,y) € C[z,y]) and Specg E would b, analytic);

(d) E can be realized in the field of rational functions €(z,y) as a differential C-subalgebra with
respect to the derivation D o 2 4 x—z}%‘

In this way the differential integral domain E has transcendence degree equal to 2 over €, its
spectrum of maximal ideals is not analytic and, consequently, (as a commutative associative C-algebra)
E cannot be finitely generated.

We leave it as an exercise for the reader to verify two more properties of the C-algebra E:

() €lz,] C B C Clz,y,27"] € €(w,p)

(f) E is a simple differential C-algebra.

5. Proof of Theorem 2. An arbitrary k-subalgebra C of the finitely generated algebra k[X]
is countably dimensional. If C' contains the identity element of k[X], then we can choose a basis
{eili = 0,1,...} in C, where eg % 1. Let Co = k - o, Cia ¢f Gileisa] (i = 0,1,2,...). As soon
as the field k is algebraically closed, the k-algebra C is isomorphic to the polynomial algebra kles].
Let us consider an ascending chain of quotient fields Q(C;) of k-algebras C;. By virtue of the fact
that k[X] is finitely generated and deg,k(X) = 1, the field k(X) is a finite extension of the field
Q(C) and dimg(c,)Q(Ci) < dimg(,)Q(Cit1) < dimg(c,)k(X). Consequently, the ascending chain
of fields Q(C;) (¢ = 0,1,2,...) is stabilized for a sufficiently large integer N, i.e. Q(Cn) = Q(CN+i)

(i=12..) Let A% Cy, then Q(4) = Q(C) C k(X). Embedding A C k[X] defines a natural

taking into consideration the equality z'? +y'? = ¢ we have that 2 A=ct (%%)2, y? A=c?. (%—’:—)2. As soon as
AZE0and A = (%L; - (-I—l)ll2 : %%) (9 - (=1)M% %»g—), the irreducible polynomial H(z,y) does not divide the 4, 1,e.
A #0 in k[Xu] and (), (7')* € k[Xu]a C k(Xn).

-



regular map v : X — X4 aef Spec,A. As soon as degik(X) = 1, the set X\v(X) is finite and X4
contains a finite number of singularities. Thus, in the k-algebra A we can choose an element d, for

which the following statements are true

(a) the localization A4 aef Ald™'] € Q(A) of the algebra A with respect to the element d is an

integrally closed k-algebra;
(b) the localization (k[X])q is composed by all the algebraic elements over A4 and any ideal from
Spec Aq can be raised to an ideal from Specy (k[X])4, in particular, to an ideal from Specy(Cn+i)a-

By Proposition 1, where F = A4, G = (Cn+i)d, we conclude that Ay = (Cn+:)a = Cq and we have

a chain of subalgebras A aef Cy CCLCB qef Ag = (Cnyi)a C Q(A) satistying all the conditions of

Lemma on affinity of intermediate subalgebra. It completes the proof of Theorem 2 in the case when
the k-subalgebra C contains the identity element of k[X].

Otherwise, we consider the k-subalgebra Ciq “r1eC , which, as proved above, is generated by
a finite subset of its elements: e; = i1 ® ¢ (i = 1,...,m, m = m(C), ¢; € C, A; € k). But then
Ci,...,cm € C generate C. Theorem 2 is completely proved.
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